### REDUCE AND PREVENT EXACERBATION IN COPD PATIENTS:

### IS IT EASY?

พ.ญ. ณับผลิกา กองพลพรหม

สาขาวิชาโรคระบบทางเดินหายใจและเวชบำบัดวิกฤต ภาควิชาอายุรศาสตร์ คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

# How COPD Affects the Lungs





Active reduction of risk factor(s); influenza vaccination

Add short-acting bronchodilator (when needed)

**Add** regular treatment with one or more long-acting bronchodilators (when needed); **Add** rehabilitation

**Add** inhaled glucocorticosteroids if repeated exacerbations

*Add* long term oxygen if chronic respiratory failure. *Consider* 

surgical treatments

#### GOLD 2009

## Outline

Reduce and Prevent exacerbation in COPD patients: Is it easy?

#### It isn't easy : Dr.Napplika (20 min)

- Challenge of reducing and preventing exacerbation
- Impact of Exacerbation (Journal data ex.ECLIPSE, Data admit)
- Exacerbation assessment, definition in practice -> it isn't clear
- Drug in practice -> available ,cost, start delay -> impact to outcome
- Non-Drug in practice Ex.Rehab -> limits of resource (HCP, place), outcome

#### It's easy : Dr.Watchara (20 min)

- Impact of Exacerbation -> We know. Prioritize to reduce & prevent exacerbation.
- Exacerbation definition in practice -> AE (ER, add antibiotic, add steroid)
- How to treat -> Follow by GOLD GL 1 hospitalization , 2 AE (ER, add antibiotic, add steroid)
- Drug in practice -> cost-effectiveness (price/efficacy)
- Non-Drug in practice Ex. Rehab -> together with drug

#### **Clinical Course of COPD**



# REDUCE AND PREVENT EXACERBATION IN COPD PATIENTS: IS IT EASY?

Not

## What are exacerbations?

Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2010 defines an exacerbation as:

"an event in the natural course of the disease characterized by a change in the patient's baseline dyspnea, cough, and/or sputum that is beyond normal day-today variations, is acute in onset and may warrant a change in regular medication"<sup>1</sup>

- May be mild, moderate or severe in nature. Severe exacerbations require hospitalisation and are associated with a prolonged recovery period<sup>2</sup>
- Commonly caused by bacterial/viral infections of the lungs and airways<sup>1</sup>
- Associated with increases in markers of inflammation<sup>3,4</sup>
- Distressing for patients and their loved ones
- 1. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease, Global Initiative for Chronic Obstructive Lung Disease (GOLD) **2010**. Available from www.goldcopd.org
- 2. Seemungal TA, Donaldson GC, Bhowmik A, et al. Am J Respir Crit Care Med 2000;161:1608-1613.
- 3. Perera W, Hurst JR, Wilkinson TM, et al. *Eur Respir J* 2007;29:527-534.
- 4. Papi A, Bellettato CM, Braccioni F, et al. Am J Respir Crit Care Med 2006;173:1114–1121.

## Exacerbation

Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2014 defines an exacerbation as:

An acute event characterized by a worsening of patient's respiratory symptoms that is beyond normal day to day variations and leads to a change in medicine

Making this definition operational has been difficult.

 high degree of variability in the definition is due to different etiologies as well as studies/trials necessity of a particular definition

#### CHALLENGE OF REDUCING AND PREVENTING EXACERBATION

How important is it?

#### Rates of AECOPD and Severe AECOPD

 Annual rates of AECOPD varied from 0.8 to 3.8 per person with COPD

Johnston AK, Mannino DM. Informa Healthcare 2008: 15–26

- In population-based cohorts, hospitalization rates varied from 0.15 to 0.30 hospitalizations annually
- In hospital based cohorts (i.e., they were originally drawn from patients hospitalized with COPD), annual hospitalization rates as high as 2.6 annually.

#### The 'frequent exacerbator phenotype': Frequency/severity by GOLD Category (1)



**ECLIPSE 1 year data** 

Hurst et al. N Engl J Med 2010

# Exacerbation history: most powerful single predictor of exacerbations (independent of GOLD Stage)



### Frequent exacerbators are found at all stages of COPD severity

| GOLD<br>stage | Base-line                                          | e therapy                                   | Exacerbation                              | % of patients<br>who were<br>'Frequent<br>exacerbators' |  |
|---------------|----------------------------------------------------|---------------------------------------------|-------------------------------------------|---------------------------------------------------------|--|
|               | % Patients<br>on<br>long-acting<br>bronchodilators | % Patients on<br>inhaled<br>corticosteroids | rate<br>in year 1<br>(number/<br>patient) |                                                         |  |
| П             | 67                                                 | 60                                          | 0.85                                      | 22                                                      |  |
| Ш             | 83                                                 | 80                                          | 1.34                                      | 33                                                      |  |
| IV            | 86                                                 | 86                                          | 2.00                                      | 47                                                      |  |

Adapted from Hurst JR, Vestbo J, Anzueto A et al. N Engl J Med 2010;363:1128-1138.

# Patients at increased risk can be identified based on patient recall of previous events

- Ask your patients for any exacerbation (flare-up) treated with antibiotics and/or oral steroids in the previous year
- Ask your patients about any hospitalizations due to exacerbations in the previous year

If your patient answers **YES** to either of these questions the risk is **5.72 times higher** that this patient will experience 2 or more exacerbations within the next year, compared with the patient answers NO (p<0.001)

Adapted from Hurst JR, Vestbo J, Anzueto A et al. N Engl J Med 2010;363:1128-1138.



The cohort included 73,106 patients hospitalised for the first time for COPD, of whom 50,580 died during the 17-year follow-up.

- 50% and 75% mortality at 3.6 and 7.7 years respectively
- The median time from the first to the second hospitalised exacerbation was around 5 years and decreased to <4 months from the 9th to the10th
- The risk of the subsequent severe exacerbation was increased threefold after the second severe exacerbation and 24-fold after the 10th, relative to the first
- Mortality after a severe exacerbation peaked to 40 deaths per 10 000 per day in the first week after admission, dropping gradually to 5 after 3 months

#### Frequent exacerbations drive disease progression **Patients with frequent exacerbations** Increased Lower quality of life mortality rate Increased Increased risk of inflammation recurrent exacerbations **Faster disease** Increased likelihood of hospitalisation progression

Adapted from Wedzicha JA and Seemungal TA. *Lancet* **2007**;370:786-796.; and Donaldson GC and Wedzicha JA. *Thorax* **2006**;61:164-168.

### Exacerbation Frequency and Severity Both Increase Mortality Risk



Soler-Cataluna JJ, Martinez-Garcia MÁ, Román Sánchez P, et al. Thorax 2005;60:925-931.

- 12% of COPD patients followed at a specialized clinic presented repeated severe exacerbations (≥3.0 exacerbations per year)
  - responsible for 57% of all hospital admissions and for 61% of all emergency room visits

Arch Bronconeumol 2001; 37:375–381

Frequent COPD exacerbators, ≥3.0 severe exacerbations per year, had a fourfold increased risk of death (95% CI, 1.80–9.45) compared with patients who did not have exacerbations at all

Thorax 2005; 60:925–931

- Hospitalization has emerged as the main cause of healthcare resource use costs related to COPD exacerbations
  - 73% of these costs are attributed to the 10% of COPD patients with repeated exacerbations alone
    Chest 2000: 117:5S–9S

## Outcome of COPD exacerbations

#### **Percent of patients**



Seneff et al. JAMA 1995 Murata et al. Ann Emerg Med 1991 Adams et al. Chest 2000 Patil et al. Arch Intern Med 2003

# Exacerbations and worsening in health status over 3 years



Spencer et al. Eur Respir J 2004;23:1-5.

# Impact of frequent exacerbations on health related quality of life, using the St George's Respiratory Questionnaire (SGRQ)

|                             | No. of patients | Study<br>design | Duration<br>(years) | Threshold<br>for<br>frequent<br>exacerbations | Impact of frequent<br>exacerbations on<br>HRQoL<br>(differences between frequent<br>and infrequent exacerbations,<br>expressed as score units) |              |
|-----------------------------|-----------------|-----------------|---------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                             |                 |                 |                     |                                               | Baseline                                                                                                                                       | End of study |
| Seemungal et al.,<br>1998   | 70              | Observational   | 1                   | ≥3.0                                          | NR                                                                                                                                             | 15.1         |
| Miravitlles et al.,<br>2004 | 336             | Observational   | 2                   | ≥3.0                                          | +7.2                                                                                                                                           | +9.3         |
| Soler et al.,<br>2004       | 64              | Case-control    | 1                   | ≥3.0                                          | +16.4                                                                                                                                          | NR           |
| Spencer et al.,<br>2004     | 613             | RCT             | 3                   | >1.65                                         | +4.0                                                                                                                                           | NR           |
| Bourbeau et al.,<br>2007    | 336             | Observationa    | 0.5                 | ≥2.0                                          | +4.0                                                                                                                                           | +12.0        |

# Strong association between increased exacerbation frequency and HRQoL deterioration

Journal of Chronic Obstructive Pulmonary Disease, 2010 7:276–284

## **TORCH:**

#### Exacerbation rate and FEV<sub>1</sub> decline

Exacerbations per year



Adjusted for smoking status, gender, *baseline FEV*<sub>1</sub>, region, BMI, prior exacerbations, treatment, time, time by treatment and covariate by time

Celli et al AJRCCM 2008; 178: 332

| Table 2. Impact                 | of frequent exa    | acerbators on FE | V <sub>1</sub> decline |                                                                             |                                                                       |                                                                       |                 |
|---------------------------------|--------------------|------------------|------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------|
|                                 | Number of patients | Study design     | Duration<br>(in years) | Frequent exacerbator<br>definition ( <i>n</i> of<br>exacerbations per year) | Rate of ac<br>Infrequent<br>exacerbations                             | celerated FEV <sub>1</sub> decline<br>Frequent<br>exacerbations       | <i>p</i> values |
| Kanner et al., 2001<br>(7)      | 5,887              | Epidemiologic    | 5                      | ≥1.50                                                                       | Smoking status:                                                       | Smoking status:                                                       |                 |
|                                 |                    |                  |                        |                                                                             | Sustained quitter:<br>—13.0 mL yr <sup>—1</sup>                       | Sustained quitter:<br>—12.0 mL yr <sup>-1.</sup>                      | NS              |
|                                 |                    |                  |                        |                                                                             | Intermittent quitter:<br>—32.6 mL yr <sup>-1</sup>                    | Intermittent quitter:<br>–52.0 mL yr <sup>-1</sup>                    | <.05            |
|                                 |                    |                  |                        |                                                                             | Continuous smoker:<br>–55.4 mL yr <sup>–1</sup>                       | Continued smoker:<br>–69.4 mL yr <sup>-1</sup>                        | <.001           |
| Donaldson et al.,<br>2002 (8)   | 32                 | Observational    | 4                      | ≥2.92                                                                       | -32.1 mL yr <sup>-1</sup>                                             | -40.1 mL yr <sup>-1</sup>                                             | <.05            |
| Miravitlles et al.,<br>2004 (3) | 336                | Observational    | 2                      | ≥3.0                                                                        | NR                                                                    | NR                                                                    | NS              |
| Spencer et al.,<br>2004 (5)     | 613                | RCT              | 3                      | >1.65                                                                       | −55 mL yr <sup>−1</sup>                                               | −54 mL yr <sup>−1</sup>                                               | NS              |
| Cote et al., 2007<br>(15)       | 205                | Observational    | 2                      | >2.0                                                                        | NC                                                                    | -4.0 (% predicted)                                                    | NS              |
| Makris et al., 2007<br>(16)     | 102                | Observational    | 3                      | >2.85                                                                       | Smoking status:                                                       | Smoking status:                                                       |                 |
| (·)                             |                    |                  |                        |                                                                             | Ex-smokers: –0.85<br>(% predicted)<br>Smokers: –3.15 (%<br>predicted) | Ex-smokers: –2.80<br>(% predicted)<br>Smokers: –4.10<br>(% predicted) | = .017          |

TORCH has demonstrated a negative association between exacerbation frequency and FEV1 decline, with higher rates of lung function deterioration in those patients experiencing more exacerbations



represent frequent exacerbators.

**Table 3**Initial and annual change in lung function in patients with infrequent andfrequent exacerbations

|                                         | Starting value |          | Annual change                      |                                    |  |
|-----------------------------------------|----------------|----------|------------------------------------|------------------------------------|--|
|                                         | Infrequent     | Frequent | Infrequent                         | Frequent                           |  |
| Exacerbations (reported and unreported) |                |          | <50% percentile,<br><2.92 per year | > 50% percentile<br>>2.92 per year |  |
| PEF (l/min)                             | 214            | 232      | (n=0.5)<br>-0.72<br>(n=16)         | (n=40)<br>-2.94***<br>(n=16)       |  |
| FEV <sub>1</sub> (ml)                   | 893            | 950      | -32.1                              | -40.1*                             |  |

# Outcome of COPD exacerbations

- Outcomes of AECOPD vary from the return to near baseline characteristics to respiratory failure and death.
- Patients hospitalized with AECOPD have outcomes that include
  - decreased quality of life
  - diminished lung function (FEV1)
  - increased incidence of readmission
  - shorter duration between subsequent admissions
  - poorer muscle functions/weakness
  - secondary life threatening disease processes
  - increased mortality

# REDUCE AND PREVENT EXACERBATION IN COPD PATIENTS: IS IT EASY?

Not

## HOW TO IDENTIFY AECOPD

WHO?



#### COPD exacerbations exhibit two distinct patterns - sudden and gradual onset



Greater mean daily symptom scores (7.86 vs 6.55 points,p<0.001) Greater peak symptom scores (10.7 vs 10.2 points, p=0.003) Earlier peak symptoms (4.5 vs 8.0 days, p<0.001) Shorter median recovery times back to baseline health status (11vs 13 days)

# **Exacerbation Severity**

- Level I : can be treated at home
- Level II : requires hospitalization
- Level III : leads to respiratory failure



Cannot detect

- Level I would be mild to moderate exacerbations
- Level II would be severe exacerbations
- Level III would be very severe exacerbations

## HOW TO IDENTIFY HIGH RISK PATIENT

WHO?

Severity of COPD: Increased baseline dyspnea Low FEV1 Low PaO2

- Eclipse study
  - near a third of patients with very severe COPD were not associated with exacerbations at all, whereas others with less advanced disease may have repeated acute episodes

Hurst et al. N Engl J Med 2010



Increased baseline dyspnea

How to know the level of diurnal variation

Monitor PEF? - not practical

#### CAT scores in stable and exacerbating patients



<sup>†</sup>CAT scaling range 0–40, higher score indicates poorer health; dots represent individuals who lie outside the 10% and 90% limits.

Jones et al. ERJ 2009

#### Change in CAT scores 14 days after treatment for an exacerbation



Data from 65 patients and their clinicians; subjective global response to treatment

Jones et al. ERS 2010

#### **Risk factors**

Older age Severity of COPD: Increased baseline dyspnea Low FEV1 Low PaO2 Frequent past exacerbations Chronic bronchial mucus hypersecretion Inflammation: Higher airway inflammation Higher systemic inflammation Bacterial load (stable phase) Comorbidities/systemic manifestations: Cardiovascular Anxiety and depression Myopathy

# Exacerbations are associated with increases in inflammatory cells



Adapted from Saetta M, Di Stefano A, Maestrelli P, et al. Am J Respir Crit Care Med 1994;150:1646-1652.
# Inflammatory markers are increased at baseline in frequent exacerbators



#### Number of exacerbations in previous year

Bhowmilk A, Seemungal TA, Sapsford RJ, et al. *Thorax* **2000**;55:114-120.

## HOW TO CHOOSE TREATMENT REGIMEN

**Availability & Cost** 



Active reduction of risk factor(s); influenza vaccination

Add short-acting bronchodilator (when needed)

**Add** regular treatment with one or more long-acting bronchodilators (when needed); **Add** rehabilitation

**Add** inhaled glucocorticosteroids if repeated exacerbations

*Add* long term oxygen if chronic respiratory failure. *Consider* 

surgical treatments

### Overview of Medications for stable COPD

|                               | S | ABA | /SAN | <b>/</b> A |   | AM<br>LA | A oi<br>BA | r |   | CS/L | ABA |   |   | PD | E4 |   |
|-------------------------------|---|-----|------|------------|---|----------|------------|---|---|------|-----|---|---|----|----|---|
| Symptom Reduction             | 1 | 2   | 3    | 4          | 1 | 2        | 3          | 4 | 1 | 2*   | 3   | 4 | 1 | 2  | 3  | 4 |
| Relieve symptoms              | J | J   | J    | J          | - | J        | J          | J |   | J    | J   | J | - | -  | ?  | ? |
| Improve exercise<br>tolerance | - | -   | -    | -          | - | J        | J          | J |   | -    | -   | - | - | -  | -  | - |
| Improve health status         | - | -   | -    | -          | - | ſ        | J          | 1 |   | J    | J   | J | - | -  | -  | - |
| Risk Reduction                | 1 | 2   | 3    | 4          | 1 | 2        | 3          | 4 | 1 | 2*   | 3   | 4 | 1 | 2  | 3  | 4 |
| Prevent disease progression   | - | -   | -    | -          | - | -        | -          | - | - | -    | -   | - | - | -  | -  | - |
| Prevent and treat             | - | -   | -    | -          | - | J        | J          | 1 | - | J    | J   | J | - | -  | J  | J |
| Reduce mortality              | - | -   | -    | -          | - | -        | -          | - | - | ?    | ?   | ? | - | -  | -  | - |

\*Less than 60% FEV<sub>1</sub> (pre bronchodilator)

Not on a background of ICS

#### GOLD Strategy Document 2011 (http://www.goldcopd.org/)

### Manage Stable COPD: Pharmacologic Therapy FIRST CHOICE



## mMRC 0-1 mMRC ≥ 2 CAT < 10 CAT ≥ 10



### Manage Stable COPD: Pharmacologic Therapy FIRST CHOICE



## mMRC 0-1 mMRC ≥ 2 CAT < 10 CAT ≥ 10

Global Strategy for Diagnosis, Management and Prevention of COPD

# Manage Stable COPD: Pharmacologic Therapy SECOND CHOICE



 $\begin{array}{ll} mMRC \ 0-1 & mMRC \ge 2 \\ CAT < 10 & CAT \ge 10 \end{array}$ 

Global Strategy for Diagnosis, Management and Prevention of COPD

## Manage Stable COPD: Pharmacologic Therapy ALTERNATIVE CHOICES



 $\begin{array}{ll} mMRC \ 0-1 & mMRC \geq 2 \\ CAT < 10 & CAT \geq 10 \end{array}$ 



### Cost / month

|                   | Chula | Private          |
|-------------------|-------|------------------|
| SFC ACC<br>50/500 | 749   | NA               |
| SFC ACC<br>50/250 | 577   | 1200             |
| SFC evo<br>25/250 | 700   | (25/125)<br>1050 |

|             | Chula | Private |
|-------------|-------|---------|
| B/F 320/9   | 737   | NA      |
| B/F 160/4.5 | 1118  | 1395    |



| Chula | Private |
|-------|---------|
| 1297  | 1650    |



| Chula | Private |
|-------|---------|
| 1112  | 2220    |



| Chula | Private |
|-------|---------|
| 356   | NA      |









## Availability & Cost

| COPD                   | В                                | С                                                | D                                                                                                                                                |
|------------------------|----------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 <sup>st</sup> choice | LABA or LAMA                     | ICS+LABA<br>or LAMA                              | ICS+LABA<br>And/or LAMA                                                                                                                          |
| CU                     | 1297 VS 1112                     | 750 VS 1112                                      | 1900                                                                                                                                             |
| Private                | 1650 VS 2220                     | 1200 VS 2220                                     | 3420                                                                                                                                             |
| 2 <sup>nd</sup> choice | LABA and LAMA                    | LABA and LAMA                                    | <ul> <li>ICS and LAMA</li> <li>ICS + LABA and LAMA</li> <li>ICS + LABA and PDE4-inh</li> <li>LAMA and LABA</li> <li>LAMA and PDE4-inh</li> </ul> |
| CU                     | 2400                             | 2400                                             | More than 1400                                                                                                                                   |
| Private                | 3870                             | 3870                                             | More than 2700                                                                                                                                   |
| 3 <sup>rd</sup> choice | SAMA or SABA<br>And theophylline | PDE4-inh.<br>SABA and/or<br>SAMA<br>Theophylline | Carbocysteine<br>SABA and/or SAMA<br>Theophylline                                                                                                |
| CU                     | 440                              | 1900 VS 440                                      | 980                                                                                                                                              |
| Private                | 760                              | 2120 VS 760                                      | 1600                                                                                                                                             |

## DRUG EFFICACY

## **Chronic Inflammation plays a central role in COPD**



Barnes PJ. From: Stockley RA, Rennard SI, Rabe K, et al (Editors). Chronic Obstructive Pulmonary Disease. Oxford, England: Blackwell Publishing; 2007:860.

## Exacerbation

SFC significantly reduces exacerbations over 3 years (TORCH)



1. Calverley PMA et al. N Eng J Med 2007; 356: 775-789.

## SFC reduces the rate of exacerbations requiring systemic corticosteroids over 3 years (TORCH)



1. Calverley PMA et al. N Eng J Med 2007; 356: 775-789.

# SFC reduces the rate of severe exacerbations requiring hospitalisation over 3 years (TORCH)



|                | Treatment effect | p-value |
|----------------|------------------|---------|
| SFC vs placebo | 17%              | 0.03    |
| SFC vs sal     | -2%              | 0.79    |
| SFC vs FP      | 5%               | 0.56    |

1. Calverley PMA et al. N Eng J Med 2007; 356: 775-789.

## SFC: impact of exacerbation history (TORCH)<sup>1</sup>

- In patients with a history of more frequent exacerbations, there were trends to higher rates overall, and a greater effect of treatment
- Reductions in exacerbation rates associated with treatment are not dependent on a history of frequent exacerbations, and the benefits of SFC on exacerbations are still seen in patients who had no history of an exacerbation in the previous 12 months

| Exacerbation history: impact of SFC | % reduction |
|-------------------------------------|-------------|
| No recalled exacerbations           | 19          |
| 1 exacerbation in previous year     | 26          |
| ≥2 exacerbations in previous year   | 31          |

## **UPLIFT Study – Effects on Exacerbations**



Tashkin DP, et al. N Engl J Med. 2008;359:1543-1554. Copyright © 2008 Massachusetts Medical Society. All rights reserved.

### RECORD – ROFLUMILAST REDUCED EXACERBATIONS IN PATIENTS WITH MODERATE TO SEVERE COPD



## Greatest benefits of roflumilast were observed in PATIENTS WITH A HISTORY OF frequent exacerbations

M2-124 and M2-125 pooled post hoc analysis



Bateman ED, Rabe KF, Calverley PMA, et al. *Eur Respir J* **2011**, erj01787-2010.3d; accepted manuscript, DOI: 10.1183/09031936.00178710

## The effect of roflumilast on exacerbations was greatest in patients with chronic cough and sputum



Adapted from Rennard SI, Calverley PMA, Goehring UM, et al. *Respiratory Research* **2011**: 12: 18.

Quality of life

SFC significant improvements in quality of life (TORCH)



1. Calverley PMA et al. N Eng J Med 2007; 356: 775-789.

# SFC: Significant and sustained improvements in quality of life (INSPIRE)



| SFC vs Tio                                                                  | Difference(SE)                                                   | 95% CI                                                               | p-value                          |  |
|-----------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------|--|
| Visit 6 (wk 32)<br>Visit 8 (wk 56)<br>Visit 10 (wk 80)<br>Visit 12 (wk 104) | -1.92 (0.832)<br>-2.07 (0.883)<br>-2.04 (0.936)<br>-2.07 (0.994) | (-3.55, -0.29)<br>(-3.81, -0.34)<br>(-3.88, -0.20)<br>(-4.02, -0.12) | 0.021<br>0.019<br>0.030<br>0.038 |  |
|                                                                             |                                                                  | (                                                                    |                                  |  |

1. Wedzicha JA et al. Am J Crit Care Med 2008; 177: 19-26.

**INSPIRE** study

## RECORD – roflumilast improved total SGRQ score in COPD patients



Rabe KF, Bateman ED, O'Donnell D, et al. Lancet 2005;366:563-571.

\* p<0.05, \*\*\* p<0.0001 for change versus baseline

Lung function

# SFC slows the rate of decline of lung function over 3 years (TORCH)



SFC versus placebo: 16 ml/year, p<0.001 Salmeterol versus placebo: 13 ml/year, p=0.003 FP versus placebo: 13 ml/year, p=0.003

1. Celli BR et al. Am J Respir Crit Care Med 2008; 178: 332–338.

# SFC slows the rate of decline of lung function over 3 years (TORCH)



1. Celli BR et al. Am J Respir Crit Care Med 2008; 178: 332–338.

## UPLIFT: Improvement of Lung Function Over 4 Years With Tiotropium



Tashkin DP, et al. N Engl J Med. 2008;359:1543-1554. Copyright © 2008 Massachusetts Medical Society. All rights reserved.

## Survival

## SFC all-cause mortality at 3 years (TORCH)



1. Calverley PMA et al. N Eng J Med 2007; 356: 775-789.

### SFC all-cause mortality at 3 years Cox's proportional hazards (TORCH)

|                                 | Placebo<br>(n=1,524) | SFC<br>(n=1,533) |  |
|---------------------------------|----------------------|------------------|--|
| Number of deaths                | 231                  | 193              |  |
| Percentage of deaths by 3 years | 15.2                 | 12.6             |  |
| HR (95% CI) <sup>†</sup>        | 0.811 (0.670, 0.982) |                  |  |
| p-value <sup>†</sup>            | 0.031                |                  |  |

<sup>†</sup>Cox's proportional hazards model estimate at mean age,  $FEV_1$ , body mass index and proportional coefficients for smoking status, gender and region

1. Calverley PMA et al. N Eng J Med 2007; 356: 775-789.

SFC COPD-related mortality by 3 years (TORCH)



SFC reduced the rate of COPD-related mortality by 22% compared with placebo (Hazard ratio 0.78, 95% CI 0.570 to 1.057; p=0.107)

1. Calverley PMA et al. N Eng J Med 2007; 356: 775-789.

## UPLIFT: 4-year Evaluation of Tiotropium – Mortality



Adapted from Tashkin DP, et al. N Engl J Med. 2008;359:1543-1554.

# SFC improved survival over 2 years vs tiotropium (INSPIRE)

INSPIRE showed a significant reduction in all-cause mortality with SFC vs tiotropium over 2 years (p=0.012)



**INSPIRE** study
# PM&R

#### A COMBINATION OF PHYSICAL TRAINING, EDUCATION AND SUPPORT

## Facility & Feasibility



Active reduction of risk factor(s); influenza vaccination

Add short-acting bronchodilator (when needed)

**Add** regular treatment with one or more long-acting bronchodilators (when needed); **Add** rehabilitation

**Add** inhaled glucocorticosteroids if repeated exacerbations

*Add* long term oxygen if chronic respiratory failure. *Consider* 

surgical treatments

#### **Benefits of Pulmonary Rehabilitation in COPD**

- Improves exercise capacity (Evidence A).
- Reduces the perceived intensity of breathlessness (Evidence A).
- Improves health-related quality of life (Evidence A).
- Reduces the number of hospitalizations and days in the hospital (Evidence A).
- Reduces anxiety and depression associated with COPD (Evidence A).
- Strength and endurance training of the upper limbs improves arm function (Evidence B).
- · Benefits extend well beyond the immediate period of training (Evidence B).
- · Improves survival (Evidence B).
- Respiratory muscle training is beneficial, especially when combined with general exercise training (Evidence C).
- Psychosocial intervention is helpful (Evidence C).



Relationship between the

postrehabilitation 6-minute walk distance and survival following pulmonary rehabilitation in 1 49 patients with chronic lung disease (COPD in 133)

 For every 100-foot increase in exercise performance, estimated survival was increased by approximately 11%

#### Forest plot of comparison: Hospital admission

|                                                                                                          | Experimental |       | Control |       |                | Odds Ratio          | Odds Ratio                             |
|----------------------------------------------------------------------------------------------------------|--------------|-------|---------|-------|----------------|---------------------|----------------------------------------|
| Study or Subgroup                                                                                        | Events       | Total | Events  | Total | Weight         | M-H, Random, 95% Cl | M-H, Random, 95% Cl                    |
| Behnke 2000                                                                                              | 3            | 14    | 9       | 12    | 16.7%          | 0.09 [0.01, 0.56]   |                                        |
| Eaton 2009                                                                                               | 11           | 47    | 15      | 50    | 29.9%          | 0.71 [0.29, 1.77]   |                                        |
| Man 2004                                                                                                 | 2            | 20    | 12      | 21    | 18.1%          | 0.08 [0.02, 0.45]   | <b>-</b>                               |
| Murphy 2005                                                                                              | 2            | 13    | 5       | 13    | 16.2%          | 0.29 [0.04, 1.90]   |                                        |
| Seymour 2010                                                                                             | 2            | 30    | 10      | 30    | 19.0%          | 0.14 [0.03, 0.72]   |                                        |
| Total (95% CI)                                                                                           |              | 124   |         | 126   | <b>100.0</b> % | 0.22 [0.08, 0.58]   | •                                      |
| Total events                                                                                             | 20           |       | 51      |       |                |                     |                                        |
| Heterogeneity: Tau <sup>2</sup> = 0.61; Chi <sup>2</sup> = 8.15, df = 4 (P = 0.09); I <sup>2</sup> = 51% |              |       |         |       |                |                     |                                        |
| Test for overall effect: Z = 3.06 (P = 0.002)                                                            |              |       |         |       |                | F                   | Favours rehabilitation Favours control |

#### Forest plot of comparison: Mortality



#### Cochrane meta-analysis concluded that

- a significant reduction in odds of hospital admissions and death with pulmonary rehabilitation following acute exacerbations
- demonstrating consistent improvements in QoL and exercise capacity





Preferably it should be a large, quiet, and comfortable fitness facility in which all the people involved in the therapeutic process can be accommodated Pulmonary rehabilitation programs

- Respiratory therapist
- Nurse
- Cardio-pulmonary physiotherapist

Separate rooms should be available to offer discretion to patients who have undergone bronchial drainage procedures that may induce even copious expectoration



### Summary Reduce and Prevent exacerbation in COPD patients: It isn't easy

- Unclear definition of AECOPD
- It's hard to identify :
  - who has AECOPD → difficult to evaluate individual level of diurnal variation
  - who is at risk
- Drug : availability & cost
- Non-Drug : PM&R -> limits of resource (HCP, place), feasibility

